Lecture Notes & Examples 3.2 Part C and Part D
5. How Well the Line Fits the Data: Residual Plots
Because the residuals show how far the data fall from our regression line, examining the residuals helps us
assess how well the line describes the data. It should be noted that the mean of the least-squares residualsis
always zero.

Example — Does Fidgeting Keep You Slim?

Examining Residuals

Let’s return to the fat gain and NEA study involving 16 young
people who volunteered to overeat for 8 weeks. Those
whose NEA rose substantially gained less fat than others. We
confirmed that the least-squares regression line for these

data is fat gain = 3.505 = 0.00344 (NEA change). The o o o
calculator screen shot to the right shows a scatterplot of the -
data with the least-squares line added. H=1357 W— s 5 5] S——

One subject’s NEA rose by 135 ca. The subject gained 2.7 kg of fat. (This point is marked in the screen shot

with an X.) The predicted fat gain for 135 cal is: = 3.505 — 0.00344 (135) = 3.04 kg. .»

So }Ca.s) 5.7 vanes

The residual for this subject is therefore: "“-’jfc&bl " i
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residual = observed y — predicted y =y — § = 2.7 — 3.04 = uaiisSsulogy

This residual is negative because the data point lies below the line. The 16 data points used in calculating the
least-squares line produce 16 residuals. Rounded to two decimal places, they are

Q.57 —-0.70 0.10 -0.34 0.19 0.61 -0.26 —0.98
6% -0.18  -0.23 054 @ =054 - —=].1l] 0.93 —0.03

Because the residuals show how far the data fall from our regression line, examining the residuals helps assess
how well the line describes the data: Although residuals can be calculated from any model that is fitted to the
data, the residuals from the least-squares line have a special property: the mean of the least-squares residuals
is'always zero:. You can check that the sum of the residuals in the above example is 0.01. The sum is not exactly
0 because we rounded to two decimal places.



You can see the residuals in the scatterplot of (a) by looking at the vertical deviations of the points from the
line. The residual plot in (b) makes it easier to study the residuals by plotting them against the explanatory
variable, change in NEA. Because the mean of the residuals is always zero, the horizontal line at zero in (b)
helps orient us. This “residual = 0”line corresponds to the regression line in (a).
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A residual plot is a scatterplot of the residuals against the explanatory variable, x. They/help us assess how
well a regression line fits the data.

CHECK YOUR UNDERSTANDING P

Refer to the data below: ‘(‘A'j“"" = 3.505- CO3u (e c_.b‘,,,J‘s )

NFEA change (cal): -94 =57 =29 135 43 151 245 35
7 2 3.6 24 1

Iat ;;nn (Lg) 4 2 3.0 3.7 2

\l,,.\ dmng( (m]) ‘)’ 473 486 535 % | 580 20 ()()()
Iat gain (kg): 38 1.7 1.6 2.2 0 (0.4 2.3

1. Find the residual for the subject who increased NEA by 620 calories. Show your work.
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2. Interpret the value of this subject’s residual in context. "
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3. For which subject did the regression line a\;erprealct fat galnxlﬂy the most?Justify your answer.
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Examining Residual Plots

A residual plot in effect turns the regression line horizontal. It magnifies the deviations of the points from the
Jine, making it easier to see unusual observations and patterns.If the regression line captures the overall ~
pattern of the data, there should ,lggwgﬂgﬁggggm;n the residuals. Figure (a) shows a residual plot with a clear’
curved pattern. A straight line is not an appropriate model for these data, as Figure (b) confirms.
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Here are two important things to look for when you examine a residual plot.

1. The residual plot should show no obvious pattern. 4
e A curved pattern shows that the relationship is not linear.
e A pattern that gets increasing larger says that the regression line will not be accurate for larger values of x.

2. The residuals should be relatively small in size. y
To decide what “small” means, consider the size of the typical error with respect to the data points.
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In the figure to the right above, for example, most of the residuals are between -0.7 and 0.7. For these
individuals, the predicted fat gain from the least-squares line is within 0.7 kilogram (kg) of their actual fat gain
during the study. That sounds pretty good. But the subjects gained only between 0.4 and 4.2 kg, so a
prediction error of 0.7 kg is relatively large compared with the actual fat gain for an individual. The largest
residual, 1.64, corresponds to a prediction error of 1.64 kg. This subject’s actual fat gain was 3.8 kg, but the
regression line predicted a fat gain of only 2.16 kg. That’s a pretty large error, especially from the subject’s
perspective!



Standard deviation of the residuals We have already seen that the average prediction error (that.is; the mean
of the residuals) is O énever we use a least-squares regression lihe. That's because the positive and negative
residuals “balance out.” But that doesn’t tell us how far off the predictions are, on average. Instead, we use

the standard deviation of the residuals: s LW, W) )
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For the NEA and fat gain data, the sum of the squared residuals is 7.663. So the standard deviation of the
residuals is:
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Standard Deviation of the Residuals (s) - To find out how far off the predictions are using the residuals, we
can compute the Standard Deviation of the Residuals:

n—2 n—2

<o jz residuals® \]Z(yi - 9)?2

This value gives us the approximate size of a “typical” or “average” predicted error (residual).

Interpret the standard deviation For the NEA and fat gain data.

0.740 kg

o “THe"average error(residual) in prediction fat-gain'is 0.740 kg'Using the least-squares
regression line (kSR -

\LS\Q\.)

Technology - Using the calculator to graph residuals is covered on p. 178 of the text. To find the standard
deviation of the residuals, divide the sum of the squared residuals by n-2 and take the square root.



CHECK YOUR UNDERSTANDING

The graph shown is a residual plot for the least-squares regression of pack weight on body weight for the 8
hikers.
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1. The residual plot does not show a random scatter. Describe the pattern you see.
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2. For this regression, s = 2.27. Interpret this value in context.
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3.2.6 How Well the Line Fits the Data: The Role of r? in Regression

Coefficient of Determination. A residual plot is a graphical tool for evaluating how well a regression line fits
the data. The standard deviation of the residuals, s, gives us a numerical estimate of the average size of our
prediction errors from the regression line. There'is'another numerical quantity that.tellsus‘how'well.the
least-squares line predicts values of the response variable y. It is r?, the coefficient of determination. Some
computer packages call it “R-sg.” You may have noticed this value in some of the calculator and computer
regression output that we showed earlier. Although it’s true that r? is equal to the square of r, there is much

more to this story.

Example — Pack weight and body weight
How can we predict y if we don’t know x?

25

LY

—
140
Badwvweiaht

Suppose a new student is assigned at the last minute to
our group of 8 hikers. What}xv?urk we predict for his
pack weight? The figure % Shows a scatterplot of
the hiker data that we have studied throughout this
chapter. The least-squares line is drawn on the plotin
green. Another line has been added in blue: a
horizontal line at the mean y-value, y =28.62. If we
don’t know this new student’s body weight, then we
can’t use the regression line to make a prediction. What
should we do? Our best strategy is to use the mean
pack weight of the other 8 hikers as our prediction.
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the mean price y-bar is called the total sum of
squares (SST).

The first scatterplot shows the mean price line.

The sum of the squared prediction errors when using

The second scatterplot shows the least-squares
regression line. (LSRL)

The sum of the squared prediction errors when using
the least-squares regression line is called the sum of
squared errors (SSE).
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The first scatterplot shows the mean price line. The second scatterplot shows the least-squares ¢
regression line. (LSRL) *

The sum of the squared prediction errors when using
the mean price y-bar is called the total sum of The sum of the squared prediction errors whenusing
squares (SST)! the least-squares regression line is called the sum of
squared errors (SSE). *

The figure above (a) shows the prediction errors if we use the average pack weight y as our prediction for the
original group of 8 hikers. We can see that the sum of the squared residuals for this line is
SST = Y(y; — y)? =83.87. SST measures the total variation in the y-values.

If we learn our new hiker’s body weight, then we could use the least-squares line to predict his pack weight.
How much better does the regression line do at predicting pack weights than simply using the average pack

weight y of all 8 hikers? Figure (b) reminds us that the sum of squared residuals for theleast-squares line is

% residual? = 30.90! We'll call this'SSE, for sum of squared errors.”The ratio SSE/SST tells us what proportion of
he total variation in y still remains after using the regression line to predict the values of the response

variable. In this case, = s
SSE _ 30.90 — 0368
SST 8387

This means that 36.8% of the variation in pack weight is unaccounted for by the least-squares regression line.
Taking this one step further, the proportion of the total variation in y that is accounted for by the regression
line is

1 SSE—1 0.368 =10.632
SST ' B

We interpret this by saying that “63.2% of the variation in backpack weight is accounted for by the'linear
model relating pack weight to body weight.” For this reason, we define
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Definition: The coefficient of determination, r? is the fraction of the variation in the values of
the response variable y that is accounted for by the least squares regression line of y on x. We
can calculate r? using
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Where SSE = Y residual? and SST = Y.(y; — ¥)?

It seems pretty remarkable that the ©oefficient of determination is'actually the correlation squared. This fact
provides an important connection between correlation and regression. When you report a regression, ‘give >

as'a'measure of how successful the regression was in explaining the response. When you see a correlation,
square it to get a better feel for the strength of the linear relationship

AP EXAM TIP Students often have a hard time interpreting the value of r> on AP exam questions. They
frequently leave out key words in the definition.

Our advice: Treat this as a fill-in-the-blank exercise. Write

{“

% of the variation in the [response variable name] is accounted for by the regression line.” ~
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CHECK YOUR UNDERSTANDING
1. For the least-squares regression of fat gain on NEA, r? = 0.606. Which of the following gives a correct
interpretation of this value in context? Co.(, oo

(a) 60.6% of the points lie on the least-squares regression line.

(b) 60.6% of the fat gain values are accounted for by the least-squares line.
@0.6% of the variation in fat gain is accounted for by the least-squares line.
(d) 77.8% of the variation in fat gain is accounted for by the least-squares line.

2. A recent study discovered that the correlation between the age at which an infant first speaks and the
child’s score on an IQ test given upon entering elementary school is -0.68. A scatterplot of the data shows a
linear form. Which of the following statements about this finding is correct?

(a) Infants who speak at very early ages will have higher IQ scores by the beginning of elementary school

than those who begin to speak later.

(b) 68% of the variation in IQ test scores is explained by the least-squares regression of age at first spoken

word and 1Q score.

(c) Encouraging infants to speak before they are ready can have a detrimental effect later in life, as
evidenced by their lower IQ scores.

@There is a moderately strong, negative linear relationship between age at first spoken word and later 1Q

test score for the individuals in this study.



