Name:	Hour:	Date:	
-		_	

Learning Targets

- State and check the Random, 10%, and Large Counts conditions for performing a significance test about a population proportion.
- Calculate the standardized test statistic and P-value for a test about a population proportion.

Lesson 9.2: Day 1: Are you sure Mrs. Cowells isn't a good free throw shooter?

In Lesson 9.1 we used simulation to estimate a P-value to decide whether or not Mrs. Cowells was exaggerating about her free throw percentage. Today, we will use a formula to find a P-value.

- 1. We're going to carry out the significance test from lesson 9.1 again. Begin by writing the hypotheses.
- 2. a. Each class found a different P-value because each dotplot was different. Would it be appropriate to use a Normal distribution to model the sampling distribution of \hat{p} ? Justify your answer.
 - b. Are there any other conditions we should check?
- 3. Now that conditions have been met, find the mean and standard deviation of the sampling distribution of \hat{p} .
- 4. Use the mean and standard deviation you found to label the Normal curve.
- 5. How many standard deviations below the mean (*z*-score) is $\hat{p} = 0.64$? Label it on the normal curve.
- 6. Find the probability of an 80% shooter making 32/50 ($\hat{p} = 0.64$) or less.

7. What conclusion can we make?

Lesson 9.2 Day 1– Significance Test for *p*

Important ideas: L.T. #1 Significance tests for population	on proportions Conditions must be met:
1. Random: Data should come from a	a well-designed
or Otherwise we can't infer to the pop	oulation or establish cause and effect.
	ement for the population allows us to use ampling without replacement, we meet the 10%
3. Normal: sampling distribution of the	e statistic is
** For Hypothesis Tests, we start by	γ assuming the Null H $_{\circ}$ is True, so we will use
FOR LARGE COUNTS CONDITIC	ON (NORMAL CONDITION)
	X /
L.T. #2 Calculations: Test Statistic & F Test Statistic: Measures	
Is from the on a	and in what direction
We use the Test Statistic to find the	
Test Statistic (z- score) =	

Check Your Understanding

According to the U.S. Census Bureau, the proportion of students in high school who have a part-time job is 0.25. An administrator at a local high school suspects that the proportion of students at her school who have a part-time job is less than the national figure. She would like to carry out a test at the α = 0.05 significance level. The administrator selects a random sample of 200 students from the school and finds that 39 of them have a part-time job.

- (a) State appropriate hypotheses for performing a significance test. Be sure to define the parameter of interest.
- (b) Explain why the sample result gives some evidence for the alternative hypothesis.
- (c) Check if the conditions for performing the significance test are met.

(d) Calculate the standardized test statistic and P-value.

(e) What conclusion would you make?

