Secti Lecture Notes & Examples 6.2
on6.2.1r ansforming and Combining Random Variables (pp. 358-377)
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1. Linear Transformations of Random Variables

Example. El Dorado Community College considers a student to be full-time if he or she is taking between 12 and 18
its. The number of units X that a randomly selected EDCC full-time student is taking in the fall semester has the
llowing distribution:

Number of Units (X): 12 13 14 15 16 17 18
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At EDCC, the tuition for full-time students is $50 per unit. If T = tuition for a randomly selected full-time student then
T= Q'\, x . Here is the probability distribution for T anda histogram of the probability distribution:
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Probability: 025 010 005 030 010 005 0.15
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Effect on a Random Variable of Adding (Subtracting) a Constant

Adding (or subtracting) the same number a to each value of a random variable:
® Adds a to measures of center and location (mean, median, quartiles, percentiles);

U es not change the shape of the distribution or the measures of spread (range, IQR,
standard deviation). =
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Calership keeps track of sales made during each hour of the day. Let X = the number of cars soid

%{j‘}l% t:'e first
_ 'St\rmaon\on_our of business on a randomly selected Friday. Based on previous recoras,

Is as follows:

X:Cars sold: 0 I 2 3
Probability: 0.3 0.4 ().? 0.1

The random variable X has mean pX = 1.1 and standard deviation oX = 0.943.
e ——————— i s

;'oiuppose the dealership’s manager receives a $500 bonus from the company fo : sold. Let Y = the
Us received from car sales during the first hour on a randomly selecte fiday. Find the mean and standard

deviation of Y.
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2. To encourage customers to buy cars on Friday mornings, the manager spends $75 to provide coffee and
doughnuts. The manager’s net profit T on a randomly selected Friday is the bonus earned minus this $75. Find

the mean and standard deviation of T.
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Mple (Oont). EDCC also has a campus downtown, specializing in just a few fields of study. Full-time students at the
qi C@mpus take only 3-unit classes. LetY = number of units taken in the fall semester by a randomly selected

H-ti )
™Me student at the downtown campus. Here Is the probability distribution of ¥:

N
p:‘"‘bef ofunits(v): 12 15 18 pv= 15 units
Obabitity: 03 04 03 oy = 2.3 units

'f'you were to randomly select one full-time student from the main campus and one full-time student from the
downtown campus and add their number of units, the expected value of the sum (S =X +Y) would be
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Mean of the Sum of Random Variables

For any two random variables X and Y, if T = X + Y, then the expected value of T s

E(T)=HT=M,‘ X U~}>

In general, the mean of the sum of several random variables is the sum of their means.

definition: If knowing whether any event involving X alone has occurred tells us nothing about the

occurrence of any other event involving Y alone, and vice versa, then X and Y are independent random
variables.

Probability models often assume independence when the random variables describe outcomes that appear unrelated to
each other. You should always ask whether the assumption of independence is reasonable.
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m of several independent random variables is the sum of their

In general, the variance of the su
variances.

Note: On the AP Exam, many students lose credit when combining two or more random variables because they add the
standard deviations instead of adding the variances.

Problem: Let B = the amount spent on books in the fall semester for a randomly selected full-time student at EDCC.
C = overall cost for tuition and fees for a randomly selected

Suppose that ps = 153 and os = 32. Recall from earlier that
full-time student at EDCC and that pic = 832.50 and oc = 103. Find the mean and standard deviation of the cost of

tuition, fees and books (C + B) for a randomly selected full-time student at EDCC.
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Probability p: 0.3 0.4 0.2 0.1

Mean: py = 1.1 Standard deviation: ox = 0.943

Y Cars leased y;: 0 I 2
Probability p;: 04 0.5 0.1
Mean: py = 0.7 Standard deviation: oy = 0.64
Define T=Xx+Y.
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3. The dealership’s manager receives a $500 bonus for each car sold and a $300 bonus for each car leased. Find the
vean and standard deviation of the manager’s total bonus B. Show your work.
B B J00 X 3 S0y

M2 SOy § 100

Mgz $00(L1) ¥ 300 (01) = 300 -
= | 2 P
0% '\f(sw-o',) y (WAE/

2 q 09
Uy m‘,ﬂﬁﬁ (300+,LM) Z 4%



Foflnytwb - Mean of the Difference of Random Variables
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Note: the order of subtraction is important.

Variance of the Difference of Random Variables

For any two independent random variables Xand Y, if D= then the variance of D is
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Cars sold x;: 0 | 2
Probability p;: 03 04 0.2 01
Mean: iy = 1.1 Standard deviation: ox = 0.943
Cars leased »¥;: 0 ] zl g
Probability p;: 04 0.5 0.1

Mean: py = 0.7 Standard deviation: ay = 0.64

DefineD=X-Y.
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