10 random students' hoars of sleep: $6,7,8,5,8,9,8,4,6.5,4$
Name: $\qquad$ Hour: $\qquad$ Date: $\qquad$
Learning Targets

- State and check the Random, $10 \%$, and Normal/Large Sample conditions for performing a significance test about a population mean.
- Calculate the standardized test statistic and P -value for a test about a population mean.
- Perform a significance test about a population mean.

Lesson 9.3: Day 1: Are you getting enough sleep?
It's recommended that teenagers get 8 hours of sleep a night. Mrs. Cowells believes her AP Stats students are getting less than the recommended 8 hours of sleep per night. To test her belief, take a random sample of 10 students in class and record the number of hours of sleep for each. Do these data provide convincing evidence that the AP stats students get less than 8 hours of sleep per night using $\alpha=0.05$ ?

1. Calculate the sample mean and standard deviation. (use calc)

$$
\bar{x}=6.55 \quad S_{x}=1.771
$$

2. State the appropriate hypotheses for a significance test. Be sure to define the parameter of interest.
Ho: $u=8 \quad u=$ true mean hours of sleep for AP Stat
$\mathrm{Ha}_{\mathrm{a}}: u<8 \quad$ Students at $H F \mathbb{I}$
3. What conditions must be met? Check them.
(1) Random
(2) $10 \%$ (Independent)

Random Sample of

$$
\begin{aligned}
& 10(10) \angle \text { pop of all } \\
& 100 \text { AP stat Students }
\end{aligned}
$$

$$
10 \Omega
$$

no! (prose dwith caution)

4. Give the formulas for the mean and standard deviation of the sampling distribution of $\bar{x}$

$$
\begin{aligned}
& u \bar{x}=\mu \\
& t=\frac{\bar{x}-\mu}{s x / \sqrt{n}}
\end{aligned}
$$ and calculate the values.

$$
\begin{aligned}
& \left.\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \approx \frac{5 x}{\sqrt{n}}\right\} \quad \sigma_{x}^{-} \approx \frac{5_{x}}{\sqrt{n}} \\
& \sigma_{\bar{x}}=\frac{1.771}{\sqrt{10}} \approx 0.56 \\
& \text { calculate the test statistic. } t
\end{aligned} \quad \text { degrees of free dam }=
$$

5. Draw a picture and then calculate the test statistic. $t$


Name: $\qquad$ Hour: $\qquad$ Date: $\qquad$
6. Remember, since we are working with means, the test statistic is at value. Use table $B$ to find the $P$-value.

Prulue from Table B
Using Table B: Go to row $\partial f=n-1 \rightarrow$ between. 01 and .02
find closest $t$-values and match tail
probability: Pivaluc w. ll be a range between $2 H$ 's.
7. What conclusion can we make?

* Use Call
$t \overline{c \partial f}($ lower, upper, $\partial f)$
P. Value of .015 $\angle \alpha=.05$, so we reject null hypothes is and have $(-100,-2.5899)=.015$

Convincing evidence that the true mean hours of sleep for $A F$ II
AP Stat Students is kiss than 8 hours we must be cautious of our results, as the Lesson 9.3 Day 1-Significance Test for $\mu$
Important ideas:
L.T. \#1 Conditions:
(1) Random
(2) Independence $(10 \%)$ $10 n \angle N$
(3) Normal - Population is Normal
$n \geq 30$ LT
No strong skew or

* If a condition is not met, continue test amd * Must Graph to show * Must Graph to sh
after covidence $*$ state "we must be carious of our It conclusion
L.T. \#2 Test Statistic

One Sample $t$ test
$\qquad$

$$
t=\frac{\bar{x} \cdot \mu}{s_{x} / \sqrt{n}}
$$


L.T. \#3 P-value

- Use table B with of and tail probability to find range for Pralue or
- Use calculator tc of (lower, upper, of )
- for 2 sidedsignificane test, p-value $=2 \cdot t_{c d f}($ lower, upper, $\partial f)$
$\qquad$
$\qquad$
$\qquad$
Check Your Understanding
The level of dissolved oxygen (DO) in a stream or river is an important indicator of the water's ability to support aquatic life. A researcher measures the DO level at 30 randomly chosen locations along a stream. Here are the results in milligrams per liter ( $\mathrm{mg} / \mathrm{l}$ ): $\bar{x}=4.77$ and $s_{x}=0.939$. An average dissolved oxygen level below $5 \mathrm{mg} / \mathrm{l}$ puts aquatic life at risk. Do the data provide convincing evidence at the $\alpha=0.05$ significance level that aquatic life in this stream is at risk?

State: Parameter: $\mu=$ true mean DO level Statistic: $\bar{x}=4.77$
Hypotheses: $H_{0}: \mu=5$ a Level: $\alpha$
$H_{a}: \mu<S$
Name of procedure: One Sample t-test for $\mu$
Check conditions:
(1) Random

30 Randomly Choson $v$
(2) Independence ( $10 \%$ )
$10(30) \leq$ pop all locations
300 300 along stream 2 Reasonable to assume

Do: General: $t=\frac{s t a t-n u l l}{S D}$
Specific: $t=\frac{\bar{x}-\mu}{s x / \sqrt{n}}$
Work:

$$
t=\frac{4.77-5}{. .939 / \sqrt{30}}=-1.34
$$

Picture:


Test Statistic: $t \approx-1.34$
P-value: Between . OS and. 10 $t \operatorname{of}(-100,-1.34,29) \approx .095$

Interpret P.V.lue: Assuming the mean DO level is $5 \mathrm{mg} / 1$ there is a
of getting a sample mean of
Conclude:
Since P-valee of $.0957 \alpha=.05$, we fail to reject the null and do not have convincing eu. deme that the true $M$ DO level is less than Smg//l) could you have made?

Based on your conclusion, what type of error (Typ eterne of the error., Type II b/c we tai ted Type I: Ha is true, fail to reject $H_{0}$. Foreject $H_{0}$
Determine the average $D_{0}$ is tess than $S_{m g} / 1$, when it is nat.
Consequence is spending a lot of money and unchessary wore y TheStatsMedic to try and fix 0.0 levels

Name: $\qquad$ Hour: $\qquad$ Date: $\qquad$
Two sided significance tests
In the children's game Don't Break the Ice, small plastic ice cubes are squeezed into a square frame. Each child takes turns tapping out a cube of "ice" with a plastic hammer hoping that the remaining cubes don't collapse. For the game to work correctly, the cubes must be big enough so that they hold each other in place in the plastic frame but not so big that they are too difficult to tap out. The machine that produces the plastic ice cubes is designed to make cubes that are 29.5 millimeters ( mm ) wide, but the actual width varies a little. To make sure the machine is working well, a supervisor inspects a random sample of 50 cubes every hour and measures their width. The output summarizes the data from a sample taken during one hour.
hour.

| variable | $\mathbf{N}$ | Mean | DEmean | stdDev | Min | Q1 | Median | Q3 | Max |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Width | 50 | 29.4874 | 0.0132 | 0.0935 | 29.2717 | 29.4225 | 29.4821 | 29.5544 | 29.7148 |

Do these data give convincing evidence that the mean width of cubes produced this hour is not 29.5 mm ?

State:
Parameter: $\mu=$ true mean width of the "ice cubes"
$H_{0}: \mu=29.5 \quad$ significance level: $\alpha=.05$
$H_{a:} \cdot u \neq 29.5 \quad$ statistic: $\bar{x}=29.4874$
Plan: I sample $t$-test for $u$
(1) Random

Random Sample of 50
(2) Inveparatent $(10 \%)$

Do: test stat $=\frac{s \text { tat }- \text { null }}{s_{p}}$

$$
t=\frac{\bar{x}-\mu}{5 x / \sqrt{n}}=\frac{29.4874-29.5}{.0132}=\frac{-0.012 v}{.0132}=.9545
$$

$p$ value $=2 \cdot t_{c)} f(-100,-.9545,49)=.345$
Conclude: Since Pvalue of $345>\alpha=.05$ we tai toreject the null hypothesis There is not convincing cuidme that the tree wist of the ice cubes produced this hoverieTheStatsMedic is different from da, SS.
(3) Normal $50 \geq 30 \Omega$ by CLT

Table entry for $p$ and $C$ is the point $t^{*}$ with probability $p$ lying above it and probability $C$ lying between $-t^{*}$ and $t^{*}$.


Table B $t$ distribution critical values

| df | Tail probability $p$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 25 | . 20 | . 15 | . 10 | . 05 | . 025 | . 02 | . 01 | . 005 | . 0025 | . 001 | . 0005 |
| 1 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 15.89 | 31.82 | 63.66 | 127.3 | 318.3 | 636.6 |
| 2 | . 816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 4.849 | 6.965 | 9.925 | 14.09 | 22.33 | 31.60 |
| 3 | . 765 | . 978 | 1.250 | 1.638 | 2.353 | 3.182 | 3.482 | 4.541 | 5.841 | 7.453 | 10.21 | 12.92 |
| 4 | . 741 | . 941 | 1.190 | 1.533 | 2.132 | 2.776 | 2.999 | 3.747 | 4.604 | 5.598 | 7.173 | 8.610 |
| 5 | . 727 | . 920 | 1.156 | 1.476 | 2.015 | 2.571 | 2.757 | 3.365 | 4.032 | 4.773 | 5.893 | 6.869 |
| 6 | . 718 | . 906 | 1.134 | 1.440 | 1.943 | 2.447 | 2.612 | 3.143 | 3.707 | 4.317 | 5.208 | 5.959 |
| 7 | . 711 | . 896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.517 | 2.998 | 3.499 | 4.029 | 4.785 | 5.408 |
| 8 | . 706 | . 889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.449 | 2.896 | 3.355 | 3.833 | 4.501 | 5.041 |
| 9 | . 703 | . 883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.398 | 2.821 | 3.250 | 3.690 | 4.297 | 4.781 |
| 10 | . 700 | . 879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.359 | 2.764 | 3.169 | 3.581 | 4.144 | 4.587 |
| 11 | . 697 | . 876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.328 | 2.718 | 3.106 | 3.497 | 4.025 | 4.437 |
| 12 | . 695 | . 873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.303 | 2.681 | 3.055 | 3.428 | 3.930 | 4.318 |
| 13 | . 694 | . 870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.282 | 2.650 | 3.012 | 3.372 | 3.852 | 4.221 |
| 14 | . 692 | . 868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.264 | 2.624 | 2.977 | 3.326 | 3.787 | 4.140 |
| 15 | . 691 | . 866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.249 | 2.602 | 2.947 | 3.286 | 3.733 | 4.073 |
| 16 | . 690 | . 865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.235 | 2.583 | 2.921 | 3.252 | 3.686 | 4.015 |
| 17 | . 689 | . 863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.224 | 2.567 | 2.898 | 3.222 | 3.646 | 3.965 |
| 18 | . 688 | . 862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.214 | 2.552 | 2.878 | 3.197 | 3.611 | 3.922 |
| 19 | . 688 | . 861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.205 | 2.539 | 2.861 | 3.174 | 3.579 | 3.883 |
| 20 | . 687 | . 860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.197 | 2.528 | 2.845 | 3.153 | 3.552 | 3.850 |
| 21 | . 686 | . 859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.189 | 2.518 | 2.831 | 3.135 | 3.527 | 3.819 |
| 22 | . 686 | . 858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.183 | 2.508 | 2.819 | 3.119 | 3.505 | 3.792 |
| 23 | . 685 | . 858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.177 | 2.500 | 2.807 | 3.104 | 3.485 | 3.768 |
| 24 | . 685 | . 857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.172 | 2.492 | 2.797 | 3.091 | 3.467 | 3.745 |
| 25 | . 684 | . 856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.167 | 2.485 | 2.787 | 3.078 | 3.450 | 3.725 |
| 26 | . 684 | . 856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.162 | 2.479 | 2.779 | 3.067 | 3.435 | 3.707 |
| 27 | . 684 | . 855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.158 | 2.473 | 2.771 | 3.057 | 3.421 | 3.690 |
| 28 | . 683 | . 855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.154 | 2.467 | 2.763 | 3.047 | 3.408 | 3.674 |
| 29 | . 683 | . 854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.150 | 2.462 | 2.756 | 3.038 | 3.396 | 3.659 |
| 30 | . 683 | . 854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.147 | 2.457 | 2.750 | 3.030 | 3.385 | 3.646 |
| 40 | . 681 | . 851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.123 | 2.423 | 2.704 | 2.971 | 3.307 | 3.551 |
| 50 | . 679 | . 849 | 1.047 | 1.299 | 1.676 | 2.009 | 2.109 | 2.403 | 2.678 | 2.937 | 3.261 | 3.496 |
| 60 | . 679 | . 848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.099 | 2.390 | 2.660 | 2.915 | 3.232 | 3.460 |
| 80 | . 678 | . 846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.088 | 2.374 | 2.639 | 2.887 | 3.195 | 3.416 |
| 100 | . 677 | . 845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.081 | 2.364 | 2.626 | 2.871 | 3.174 | 3.390 |
| 1000 | . 675 | . 842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.056 | 2.330 | 2.581 | 2.813 | 3.098 | 3.300 |
| $\infty$ | . 674 | . 841 | 1.036 | 1.282 | 1.645 | 1.960 | 2.054 | 2.326 | 2.576 | 2.807 | 3.091 | 3.291 |
|  | 50\% | 60\% | 70\% | 80\% | 90\% | 95\% | 96\% | 98\% | 99\% | 99.5\% | 99.8\% | 99.9\% |

Confidence level $C$

## III. Sampling Distributions and Inferential Statistics (continued)

## Sampling distributions for proportions:

| Random Variable | Parameters of Sampling Distribution |  | Standard Error of Sample Statistic |
| :---: | :---: | :---: | :---: |
| For one population: $\hat{p}$ | $\mu_{\hat{p}}=p$ | $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$ | $s_{\hat{p}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ |
| For two populations: $\hat{p}_{1}-\hat{p}_{2}$ | $\mu_{\hat{p}_{1}-\hat{p}_{2}}=p_{1}-p_{2}$ | $\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}$ | $s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$ <br> When $p_{1}=p_{2}$ is assumed: $s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\hat{p}_{c}\left(1-\hat{p}_{c}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$ <br> where $\hat{p}_{c}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}$ |

Sampling distributions for means:

| Random <br> Variable | Parameters of Sampling Distribution |  | Standard Error <br> of Sample Statistic |
| :--- | :---: | :---: | :---: |
| For one <br> population: <br> $\bar{X}$ | $\mu_{\bar{X}}=\mu$ | $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$ | $s_{\bar{X}}=\frac{s}{\sqrt{n}}$ |
| For two <br> populations: <br> $\bar{X}_{1}-\bar{X}_{2}$ | $\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}$ | $\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$ | $s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$ |

Sampling distributions for simple linear regression:

| Random <br> Variable | Parameters of Sampling Distribution |  | Standard Error* <br> of Sample Statistic |
| :---: | :---: | :---: | :---: |
| For slope: |  |  |  |
| $b$ | $\mu_{b}=\beta$ | $\sigma_{b}=\frac{\sigma}{\sigma_{x} \sqrt{n}}$, | $s_{b}=\frac{s}{s_{x} \sqrt{n-1}}$, |
|  | where $\sigma_{x}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}}$ | where $s=\sqrt{\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}$ |  |
|  |  | and $s_{x}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$ |  |

[^0]
[^0]:    *Standard deviation is a measurement of variability from the theoretical population. Standard error is the estimate of the standard deviation. If the standard deviation of the statistic is assumed to be known, then the standard deviation should be used instead of the standard error.

